Skip to Main Content

Job Title


Lead Generative AI Engineer - Player Coach


Company : AcquireX


Location : Pune, Maharashtra


Created : 2025-12-22


Job Type : Full Time


Job Description

Location: Viman Nagar, PuneAbout AcquireXBe part of the AcquireX team that unleashes the power of leading-edge technologies to help improve e-commerce processes in the e-commerce world.PurposeOwn our Generative AI technical vision. You will rapidly prototype and lead a dedicated team of two engineers to launch our company's first intelligent search and content automation systems.Role SummaryWe're looking for a hands-on Gen AI pioneer who can architect, code, and mentor. This is a "player-coach" role where you'll be building foundational systems while guiding your team. You will partner daily with product and engineering leadership to transform business goals into cutting-edge, shippable LLM-powered solutions.Key ResponsibilitiesArchitect & Build RAG Systems: Design, develop, and deploy sophisticated Retrieval-Augmented Generation (RAG) systems to power our next-generation search and discovery experience.Develop & Fine-Tune LLMs: Lead the development of advanced generative models for nuanced tasks like automated content creation, summarization, and metadata enrichment.Own the Gen AI Stack: Select, provision, and optimize our stack, leveraging managed services like Azure OpenAI or AWS Bedrock, or self-hosting models on GPU infrastructure. You will establish best practices for repo structure, CI/CD, and model/prompt versioning.Implement LLMOps: Embed robust observability using tools like OpenTelemetry and Prometheus. This includes tracking standard metrics (latency, cost, accuracy) and specialized monitoring for hallucination, toxicity, and data drift.Lead & Mentor: Hire, coach, and develop ML talent. Set the standard for high-quality code, rigorous experimentation, and rapid iteration within the Gen AI domain.Must-Have Skills- Production LLM Experience: 5+ years in Python with demonstrable success in productionizing LLM applications using modern frameworks like DSPY, LangChain, LlamaIndex, or Hugging Face Transformers. - RAG Expertise: Deep, practical knowledge of RAG architecture, including advanced prompt engineering, chunking strategies, and proficiency with vector databases (e.g., Pinecone, Weaviate, Milvus). - Cloud Proficiency: Expertise with managed LLM services (Azure OpenAI Service or AWS Bedrock). Strong foundational cloud skills in either Azure or AWS for compute orchestration (AKS/EKS), serverless functions, and storage. - MLOps Acumen: Solid experience with Docker, CI/CD pipelines (e.g., GitHub Actions, Argo), and model registries. - Leadership & Communication: Proven ability to lead small, highly technical teams and clearly communicate complex concepts to stakeholders.Nice-to-Have Skills- Experience with agentic workflows (e.g., AutoGen, CrewAI). - Familiarity with multi-modal models (text, image, etc.). - Knowledge of advanced LLM fine-tuning techniques (e.g., LoRA, QLoRA). - Strong SQL skills (especially with ClickHouse) and a keen eye for inference cost optimization.